

Fig. 8. $P_{\rm r}$ and $E_{\rm c}$ as a function of applied voltage for Bi_{3.35}La_{0.75}Ti₃O₁₂ thin films prepared at 550°C using excimer UV irradiation: (a) Saturation property, (b) P-E hysteresis loop at applied voltage of 15 V.

Electric Field / kV/cm

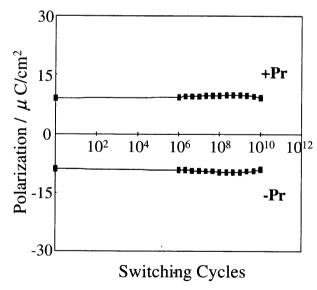
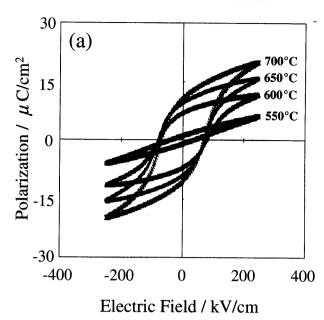



Fig. 10. Fatigue property of Bi_{3.35}La_{0.75}Ti₃O₁₂ thin films prepared at 600°C using excimer UV irradiation before and after 10¹⁰ switching cycles

 The excimer UV irradiation onto as-deposited films at 300°C in O₂ atmosphere was very effective in removing the residual organic groups in the gel films and in lowering the crystallization temperature of BLT to 550°C.

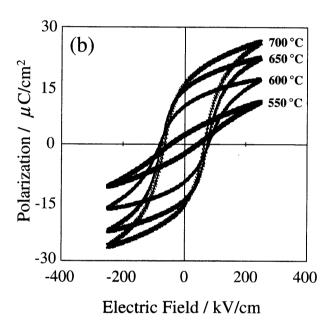


Fig. 9. P-E hysteresis loops of Bi_{3.35}La_{0.75}Ti₃O₁₂ thin films prepared at the temperature of 550-700°C by RTA without (a) and with (b) excimer UV irradiation.

- 3. The use of an excimer UV lamp further resulted in the easy formation of single-phase BLT thin films with a high (117) preferred orientation and with a homogeneous microstructure consisting of fine grains.
- 4. The 600°C-annealed BLT thin films subjected to excimer UV irradiation showed $P_{\rm r}$ of 9.8 μ C/cm² and $E_{\rm c}$ of 78 kV/cm. Synthesized BLT films with appropriate ferroelectric properties are expected for use in the ferroelectric layers of FeRAM devices.

Acknowledgement

This work was supported by a Grant-in-Aid for Scientific Research on Priority Area (B), No. 12134203 from the Ministry of Education, Culture, Sports, Science and Technology, Japan.